2017 ~ RPL ZUMA

Rabu, 22 Maret 2017

Tugas II (Tiga Model Pengembangan Perangkat Lunak)

 A.     WATERFALL PROCESS MODEL

Nama model ini sebenarnya adalah “Linear Sequential Model”. Model ini sering disebut dengan “classic life cycle” atau model waterfall. Model ini adalah model yang muncul pertama kali yaitu sekitar tahun 1970 sehingga sering dianggap kuno, tetapi merupakan model yang paling banyak dipakai didalam Software Engineering (SE). Model ini melakukan pendekatan secara sistematis dan urut mulai dari level kebutuhan sistem lalu menuju ke tahap analisis, desain, coding, testing / verification, dan maintenance. Disebut dengan waterfall karena tahap demi tahap yang dilalui harus menunggu selesainya tahap sebelumnya dan berjalan berurutan. Sebagai contoh tahap desain harus menunggu selesainya tahap sebelumnya yaitu tahap requirement. Secara umum tahapan pada model waterfall dapat dilihat pada gambar berikut :
Gambar di atas adalah tahapan umum dari model proses ini. Akan tetapi Roger S. Pressman memecah model ini menjadi 6 tahapan meskipun secara garis besar sama dengan tahapan-tahapan model waterfall pada umumnya. Berikut adalah penjelasan dari tahap-tahap yang dilakukan di dalam model ini menurut Pressman :
•    System / Information Engineering and Modeling. Permodelan ini diawali dengan mencari kebutuhan dari keseluruhan sistem yang akan diaplikasikan ke dalam bentuk software. Hal ini sangat penting, mengingat software harus dapat berinteraksi dengan elemen-elemen yang lain seperti hardware, database, dsb. Tahap ini sering disebut dengan Project Definition.
•    Software Requirements Analysis. Proses pencarian kebutuhan diintensifkan dan difokuskan pada software. Untuk mengetahui sifat dari program yang akan dibuat, maka para software engineer harus mengerti tentang domain informasi dari software, misalnya fungsi yang dibutuhkan, user interface, dsb. Dari 2 aktivitas tersebut (pencarian kebutuhan sistem dan software) harus didokumentasikan dan ditunjukkan kepada pelanggan.
•    Design. Proses ini digunakan untuk mengubah kebutuhan-kebutuhan diatas menjadi representasi ke dalam bentuk “blueprint” software sebelum coding dimulai. Desain harus dapat mengimplementasikan kebutuhan yang telah disebutkan pada tahap sebelumnya. Seperti 2 aktivitas sebelumnya, maka proses ini juga harus didokumentasikan sebagai konfigurasi dari software.
•    Coding. Untuk dapat dimengerti oleh mesin, dalam hal ini adalah komputer, maka desain tadi harus diubah bentuknya menjadi bentuk yang dapat dimengerti oleh mesin, yaitu ke dalam bahasa pemrograman melalui proses coding. Tahap ini merupakan implementasi dari tahap design yang secara teknis nantinya dikerjakan oleh programmer.
•    Testing / Verification. Sesuatu yang dibuat haruslah diujicobakan. Demikian juga dengan software. Semua fungsi-fungsi software harus diujicobakan, agar software bebas dari error, dan hasilnya harus benar-benar sesuai dengan kebutuhan yang sudah didefinisikan sebelumnya.
•    Maintenance. Pemeliharaan suatu software diperlukan, termasuk di dalamnya adalah pengembangan, karena software yang dibuat tidak selamanya hanya seperti itu. Ketika dijalankan mungkin saja masih ada errors kecil yang tidak ditemukan sebelumnya, atau ada penambahan fitur-fitur yang belum ada pada software tersebut. Pengembangan diperlukan ketika adanya perubahan dari eksternal perusahaan seperti ketika ada pergantian sistem operasi, atau perangkat lainnya.
Mengapa model ini sangat populer??? Selain karena pengaplikasian menggunakan model ini mudah, kelebihan dari model ini adalah ketika semua kebutuhan sistem dapat didefinisikan secara utuh, eksplisit, dan benar di awal project, maka SE dapat berjalan dengan baik dan tanpa masalah. Meskipun seringkali kebutuhan sistem tidak dapat didefinisikan seeksplisit yang diinginkan, tetapi paling tidak, problem pada kebutuhan sistem di awal project lebih ekonomis dalam hal uang (lebih murah), usaha, dan waktu yang terbuang lebih sedikit jika dibandingkan problem yang muncul pada tahap-tahap selanjutnya.
Meskipun demikian, karena model ini melakukan pendekatan secara urut / sequential, maka ketika suatu tahap terhambat, tahap selanjutnya tidak dapat dikerjakan dengan baik dan itu menjadi salah satu kekurangan dari model ini. Selain itu, ada beberapa kekurangan pengaplikasian model ini, antara lain adalah sebagai berikut:
•    Ketika problem muncul, maka proses berhenti, karena tidak dapat menuju ke tahapan selanjutnya. Bahkan jika kemungkinan problem tersebut muncul akibat kesalahan dari tahapan sebelumnya, maka proses harus membenahi tahapan sebelumnya agar problem ini tidak muncul. Hal-hal seperti ini yang dapat membuang waktu pengerjaan SE.
•    Karena pendekatannya secara sequential, maka setiap tahap harus menunggu hasil dari tahap sebelumnya. Hal itu tentu membuang waktu yang cukup lama, artinya bagian lain tidak dapat mengerjakan hal lain selain hanya menunggu hasil dari tahap sebelumnya. Oleh karena itu, seringkali model ini berlangsung lama pengerjaannya.
•    Pada setiap tahap proses tentunya dipekerjakan sesuai spesialisasinya masing-masing. Oleh karena itu, ketika tahap tersebut sudah tidak dikerjakan, maka sumber dayanya juga tidak terpakai lagi. Oleh karena itu, seringkali pada model proses ini dibutuhkan seseorang yang “multi-skilled”, sehingga minimal dapat membantu pengerjaan untuk tahapan berikutnya.
Kelebihan
•    Sederhana dan mudah digunakan.
•    Easy to manage due to the rigidity of the model – each phase has specific deliverables and a review process.
•    Tahapan-tahapan diproses dan diselesaikan satu persatu.
•    Bekerja dengan baik untuk proyek yang berskala kecil dimana requirement yang dibutuhkan mudah dipahami dengan baik.
•    Easy to explain to the user
•    Stages and activities are well defined
•    Helps to plan and schedule the project
•    Verification at each stage ensures early detection of errors / misunderstanding
Kekurangan:
•    Adjusting scope during the life cycle can kill a project
•    No working software is produced until late during the life cycle.
•    Each stage of the development is frozen before proceeding to the next stage.
•    Not much interactio between client and developer.
Menurut saya, tahapan-tahapan model ini sudah cukup baik dalam artian minimal untuk melakukan SE, maka harus ada tahapan-tahapan ini. Tahapan-tahapan ini jugalah yang digunakan oleh model-model yang lain pada umumnya. Ada filosofi yang mengatakan sesuatu yang sukses diciptakan pertama kali, maka akan terus dipakai di dalam pengembangannya. Hal ini juga berlaku pada waterfall model ini. Mungkin dapat dikatakan bahwa inilah standar untuk melakukan SE.
Akan tetapi, yang mungkin menjadi banyak pertimbangan mengenai penggunaan dari model ini adalah metode sequential-nya. Mungkin untuk awal-awal software diciptakan, hal ini tidak menjadi masalah, karena dengan berjalan secara berurutan, maka model ini menjadi mudah dilakukan. Sesuatu yang mudah biasanya hasilnya bagus. Oleh karena itu model ini sangat populer. Akan tetapi, seiring perkembangan software, model ini tentu tidak bisa mengikutinya. Yang menjadi kelemahan adalah pada pengerjaan secara berurutan tadi, seperti yang sudah saya utarakan sebelumnya. Kelemahan-kelemahan yang lain juga sudah saya utarakan di atas, atau bahkan masih ada yang lainnya.

B.     RAPID ROTOTYPE MODEL
Rapid prototype mengacu pada jenis metodologi pengembangan perangkat lunak yang menggunakan perencanaan minimal dalam mendukung rapid prototyping. Perencanaan dari perangkat lunak dikembangkan menggunakan RAD disisipkan dengan menulis perangkat lunak itu sendiri. Kurangnya perencanaan awal secara umum memungkinkan perangkat lunak untuk ditulis jauh lebih cepat, dan membuatnya lebih mudah untuk mengubah persyaratan.
Model ini dapat diterapkan pada kondisi:
• Kadang-kadang klien hanya memberikan beberapa kebutuhan umum software tanpa detil input, proses atau detil output.
• Di lain waktu mungkin dimana tim pembangun (developer) tidak yakin terhadap efisiensi dari algoritma yang digunakan, tingkat adaptasi terhadap sistem operasi atau rancangan form user interface.
•  Ketika situasi seperti ini terjadi model prototyping sangat membantu proses pembangunan software.
Proses pada model prototyping yang bisa dijelaskan sebagai berikut:
• Pengumpulan kebutuhan: developer dan klien bertemu dan menentukan tujuan umum, kebutuhan yang diketahui dan gambaran bagian-bagian yang akan dibutuhkan berikutnya. Detil kebutuhan mungkin tidak dibicarakan disini, pada awal pengumpulan kebutuhan
• Perancangan : perancangan dilakukan cepat dan rancangan mewakili semua aspek software yang diketahui, dan rancangan ini menjadi dasar pembuatan prototype.
• Evaluasi prototype: klien mengevaluasi prototype yang dibuat dan digunakan untuk memperjelas kebutuhan software.


•    Perulangan ketiga proses ini terus berlangsung hingga semua kebutuhan terpenuhi.
•    Prototype-prototype dibuat untuk memuaskan kebutuhan klien dan untuk memahami kebutuhan klien lebih baik
•    Prototype yang dibuat dapat dimanfaatkan kembali untuk membangun software lebih cepat, namun tidak semua prototype bisa dimanfaatkan.
•    Sekalipun prototype memudahkan komunikasi antar developer dan klien, membuat klien mendapat gambaran awal dari prototype , membantu mendapatkan kebutuhan detil lebih baik namun demikian prototype juga menimbulkan masalah.
Kelebihan:
•    Gives users (especially the general public) a tangible demonstration of what the system is about.
•    Permits the swift development of interactive software prototypes.
•    Prototypes created by this method have a high fidelity with the final product
•    The prototypes created under this method support metric-based evaluations
•    Fast cycles, with little or no code development
•    Early visualization of the product
•    Crisp definition of requirements
•    Early user testing
•    Enhanced communication within the development organization
•    Enhanced feedback to users.
•    Users are actively involved in the development
•    It provides a better system to users, as users have natural tendency to change their mind in specifying requirements and this method of developing systems supports this user tendency.
•    Since in this methodology a working model of the system is provided, the users get a better understanding of the system being developed.
•    Errors can be detected much earlier as the system is mode side by side.
•    Quicker user feedback is available leading to better solutions.

Kekurangan :
•    Dalam membuat prototype banyak hal yang diabaikan seperti efisiensi, kualitas, kemudahan dipelihara/dikembangkan, dan kecocokan dengan lingkungan yang sebenarnya. Jika klien merasa cocok dengan prototype yang disajikan dan berkeras terhadap produk tersebut, maka developer harus kerja keras untuk mewujudkan produk tersebut menjadi lebih baik, sesuai kualitas yang seharusnya.
•    developer biasanya melakukan kompromi dalam beberapa hal karena harus membuat prototype dalam waktu singkat. Mungkin sistem operasi yang tidak sesuai, bahasa pemrograman yang berbeda, atau algoritma yang lebih sederhana.
•    Leads to implementing and then repairing way of building systems.
•    Practically, this methodology may increase the complexity of the system as scope of the system may expand beyond original plans.
•    Agar model ini bisa berjalan dengan baik, perlu disepakati bersama oleh klien dan developer bahwa prototype yang dibangun merupakan alat untuk mendefinisikan kebutuhan software.

Fase-fase pendekatan RAD :
•    Bussines modeling : Merupakan penggambaran tentang requirement dari klien.
•    Data modeling : Merupakan penggambaran untuk data-data yang akan digunakan di dalam pengembangan selanjutnya.
•    Proses modeling : Merupakan penggambaran tentang semua proses yang terjadi.
•    Application generation : RAD mengasumsikan pemakaian teknik 4G (generasi keempat). Selain menciptakan PL dengan bahasa pemrograman generasi ketiga yang konvensional, RAD lebih banyak memproses kerja untuk memakai lagi komponen program atau menciptakan komponen yang bias dipakai lagi.
•    Testing and Turn Over : karena menekankan pada reusability, banyak komponen program yang telah diuji sehingga mengurangi keseluruhan waktu pengujian. Tapi komponen baru harus diuji dan semua interface harus dilatih secara penuh.

The Incremental Model
Mengadopsi model sekuensial linier dan model prototipe. Fungsi dasar sama, tapi ada tambahan asesoris (contoh : ada M.Word 1997, 2000). Fungsi tambahan ditambahkan terus untuk membuat sistem menjadi lebih baik. Pada increment pertama PL yang jadi, mengakomodasi kebutuhan inti. Baru pada tahap berikutnya ditambahkan kemampuan baru.
Contoh : pengembangan microsoft word.
•    Increment 1 : hanya memberi fungsi inti –> hanya bisa mengetik saja
•    Increment 2 : bisa word art, spelling, dll
Kelebihan model : cocok untuk produksi masal.

C. SPIRAL MODEL
             Proses model yang lain, yang cukup populer adalah Spiral Model. Model ini juga cukup baru ditemukan, yaitu pada sekitar tahun 1988 oleh Barry Boehm pada artikel A Spiral Model of Software Development and Enhancement. Spiral model adalah salah satu bentuk evolusi yang menggunakan metode iterasi natural yang dimiliki oleh model prototyping dan digabungkan dengan aspek sistimatis yang dikembangkan dengan model waterfall. Tahap desain umumnya digunakan pada model Waterfall, sedangkan tahap prototyping adalah suatu model dimana software dibuat prototype (incomplete model), “blue-print”-nya, atau contohnya dan ditunjukkan ke user / customer untuk mendapatkan feedback-nya. Jika prototype-nya sudah sesuai dengan keinginan user / customer, maka proses SE dilanjutkan dengan membuat produk sesungguhnya dengan menambah dan memperbaiki kekurangan dari prototype tadi.
                Model ini juga mengkombinasikan top-down design dengan bottom-up design, dimana top-down design menetapkan sistem global terlebih dahulu, baru diteruskan dengan detail sistemnya, sedangkan bottom-up design berlaku sebaliknya. Top-down design biasanya diaplikasikan pada model waterfall dengan sequential-nya, sedangkan bottom-up design biasanya diaplikasikan pada model prototyping dengan feedback yang diperoleh. Dari 2 kombinasi tersebut, yaitu kombinasi antara desain dan prototyping, serta top-down dan bottom-up, yang juga diaplikasikan pada model waterfall dan prototype, maka spiral model ini dapat dikatakan sebagai model proses hasil kombinasi dari kedua model tersebut. Oleh karena itu, model ini biasanya dipakai untuk pembuatan software dengan skala besar dan kompleks.
Berikut adalah gambar dari spiral model secara umum :
Spiral model dibagi menjadi beberapa framework aktivitas, yang disebut dengan task regions. Kebanyakan aktivitas2 tersebut dibagi antara 3 sampai 6 aktivitas. Berikut adalah aktivitas-aktivitas yang dilakukan dalam spiral model:
•    Customer communication. Aktivitas yang dibutuhkan untuk membangun komunikasi yang efektif antara developer dengan user / customer terutama mengenai kebutuhan dari customer.
•    Planning. Aktivitas perencanaan ini dibutuhkan untuk menentukan sumberdaya, perkiraan waktu pengerjaan, dan informasi lainnya yang dibutuhkan untuk pengembangan software.
•    Analysis risk. Aktivitas analisis resiko ini dijalankan untuk menganalisis baik resiko secara teknikal maupun secara manajerial. Tahap inilah yang mungkin tidak ada pada model proses yang juga menggunakan metode iterasi, tetapi hanya dilakukan pada spiral model.
•    Engineering. Aktivitas yang dibutuhkan untuk membangun 1 atau lebih representasi dari aplikasi secara teknikal.
•    Construction & Release. Aktivitas yang dibutuhkan untuk develop software, testing, instalasi dan penyediaan user / costumer support seperti training penggunaan software serta dokumentasi seperti buku manual penggunaan software.
•    Customer evaluation. Aktivitas yang dibutuhkan untuk mendapatkan feedback dari user / customer berdasarkan evaluasi mereka selama representasi software pada tahap engineering maupun pada implementasi selama instalasi software pada tahap construction and release.
Satu lingkaran dari bentuk spiral pada spiral model dibagi menjadi beberapa daerah yang disebut dengan region. Region tersebut dibagi sesuai dengan jumlah aktivitas yang dilakukan dalam spiral model. Tentunya lingkup tugas untuk project yang kecil dan besar berbeda. Untuk project yang besar, setiap region berisi sejumlah tugas-tugas yang tentunya lebih banyak dan kompleks daripada untuk project yang kecil. SE berjalan dari inti spiral berjalan mengitari sirkuit per sirkuit. Sebagai contoh untuk sirkuit pertama dilakukan untuk pembangunan dari spesifikasi dari software dengan mencari kebutuhan dari customer. Untuk sirkuit pertama harus menjalani semua aktivitas yang didefinisikan. Setelah 1 sirkuit terlewati lanjut ke tugas selanjutnya misalnya membangun prototype. Tugas ini juga harus mengitari 1 sirkuit dan begitu terus selanjutnya sampai project selesai.
Tidak seperti model-model konvesional dimana setelah SE selesai, maka model tersebut juga dianggap selesai. Akan tetapi hal ini tidak berlaku untuk spiral model, dimana model ini dapat digunakan kembali sepanjang umur dari software tersebut. Pada umumnya, spiral model digunakan untuk beberapa project seperti Concept Development Project (proyek pengembangan konsep), New Product Development Project (proyek pengembangan produk baru), Product Enhancement Project (proyek peningkatan produk), dan Product Maintenance Project (proyek pemeliharaan proyek). Keempat project tersebut berjalan berurutan mengitari sirkuit dari spiral. Sebagai contoh setelah suatu konsep dikembangkan dengan melalui aktivitas2 dari spiral model, maka dilanjutkan dengan proyek selanjutnya yaitu pengembangan produk baru, peningkatan produk, sampai pemeliharaan proyek. Semuanya melalui sirkuit2 dari spiral model.
Mengapa spiral model begitu populer? Pendekatan dengan model ini sangat baik digunakan untuk pengembangan sistem software dengan skala besar. Karena progres perkembangan dari SE dapat dipantau oleh kedua belah pihak baik developer maupun user / customer, sehingga mereka dapat mengerti dengan baik mengenai software ini begitu juga dengan resiko yang mungkin didapat pada setiap aktivitas yang dilakukan. Selain dari kombinasi 2 buah model yaitu waterfall dan prototyping, kelebihan dari software ini ada pada analisis resiko yang dilakukan, sehingga resiko tersebut dapat direduksi sebelum menjadi suatu masalah besar yang dapat menghambat SE. Model ini membutuhkan konsiderasi langsung terhadap resiko teknis, sehingga diharapkan dapat mengurangi terjadinya resiko yang lebih besar. Sebenarnya dengan menggunakan prototype juga bisa menghindari terjadinya resiko yang muncul, tetapi kelebihan dari model ini yaitu dilakukannya proses prototyping untuk setiap tahap dari evolusi produk secara kontinu. Model ini melakukan tahap2 yang sudah sangat baik didefinisikan pada model waterfall dan ditambah dengan iterasi yang menyebabkan model ini lebih realistis untuk merefleksikan dunia nyata. Hal-hal itulah yang menjadi kelebihan menggunakan spiral model.
Kelebihan
•    High amount of risk analysis
•    Good for large and mission-critical projects.
•    Software is produced early in the software life cycle.
Kekurangan
•    Can be a costly model to use.
•    Risk analysis requires highly specific expertise.
•    Project's success is highly dependent on the risk analysis phase.
•    Doesn't work well for smaller projects.
Spiral software development model may be applicable to projects where:
•    The projects requirements are very difficult
•    Where new technologies are used
•    is favored for large, expensive, and complicated projects.

Sumber By :
http://tonyjustinus.wordpress.com/2007/11/11/spiral-process-model/
http://eko-budi.web.ugm.ac.id/2011/03/09/model-pengembangan-perangkat-lunak-